Improving multi-criterion optimization with chaos: a novel Multi-Objective Chaotic Crow Search Algorithm
This paper presents two multi-criteria optimization techniques: the Multi-Objective Crow Search Algorithm (MOCSA) and an improved chaotic version called Multi-Objective Chaotic Crow Search Algorithm (MOCCSA). Both methods MOCSA and MOCCSA are based on an enhanced version of the recently published Crow Search Algorithm. Crows are intelligent animals with interesting strategies for protecting their food hatches. This compelling behavior is extended into a Multi-Objective approach. MOCCSA uses chaotic-based criteria on the optimization process to improve the diversity of solutions. To determinate if the performance of the algorithm is significantly enhanced, the incorporation of a chaotic operator is further validated by a statistical comparison between the proposed MOCCSA and its chaotic-free counterpart (MOCSA) indicating that the results of the two algorithms are significantly different from each other. The performance of MOCCSA is evaluated by a set of standard benchmark functions, and the results are contrasted with two well-known algorithms: Multi-Objective Dragonfly Algorithm and Multi-Objective Particle Swarm Optimization. Both quantitative and qualitative results show competitive results for the proposed approach.
You can access to the full text in the link: https://link.springer.com/article/10.1007/s00521-017-3251-x
If you have any problem to obtain this paper please contact me, also any suggestion is well received. Moreover, you can check the full list of publications here.